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Introduction Koopman operator theory
» Finding an embedding space for a linear approximation of ~ * For a nonlinear dynamical system x!™! = F(x?!)
a nonlinear dynamical system enables efficient system » |dentify the nonlinear-to-linear transformations g : £ — R
identification and control synthesis. * The Koopman operator [ , is a linear transformation
* Previous methods fail to generalize in scenarios with a on the embedding space:
variable nurgber of objects. h Kg A goF
We proposed Compositional Koopman operators that N N F11
« Use GraphNet to produce object-centric embeddings, Kg(a®) = g(F(z)) = g(=™)
» Use a block-wise linear transition matrix to regularize the o
shared structure across objects. Compositional Koopman operators
Motivatina example Transition in Koopman space (+ control)
J e¥amp g(zttl) = Kg(a') + Lut
Consider a system with N balls x; 2 [z, v, i y,]T
connected by linear spring. ’ SRS (1) The Koopman embedding of the system is composed of the
‘417 [A B -+ B] [@ Koopman eTbedding oievery objects.
w.: To _ B A B To gt:[gt 7"'795\[ ]TERN’H’L
- B B A : (2) The Koopman matrix has a block -wise structure.
m e o o — — — — -
- ] - HEN- gf“ Ky - Ky 91 Liv -+ Lin | [ul”
Three observations , — : - i - - :
(1) System state is composed of the state of each object. t°+1 I K ¢ T T y
(2) Transition matrix has a block-wise substructure. IN . S ARSI S A B NNT HUN-
(3) Same physical interactions share the same block. (3) The same physical interactions share the same sub-block.
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System Ildentification
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Simulation

Control Synthesis
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Website

http://koopman.csail.mit.edu/
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